1.导入MNIST数据集
间接运用fetch_mldata会报错,舛错信息是python3.7把fetch_mldata办法移除了,所以须要径自下载数据集
从那个网站高下载数据集:
hts://githubss/amplab/datascience-sp14/raw/master/lab7/mldata/mnist-original.mat
运用如下办法获与途径:
from sklearn.datasets.base import get_data_home print (get_data_home()) # 如我的电脑上的目录为: C:\Users\Mr.Wmn\scikit_learn_data\mldata #下载好mnist-original.mat数据集放到获与的途径里,正在输入如下内容便不会报错了 #导入数据集装分工具 from sklearn.model_selection import train_test_split #导入数据集获与工具 from sklearn.datasets import fetch_mldata #导入MLP神经网络 from sklearn.neural_network import MLPClassifier #导入numpy import numpy as np #加载MNIST手写数字数据集 mnist = fetch_mldata('MNIST original') mnist
{'DESCR': 'mldata.org dataset: mnist-original', 'COL_NAMES': ['label', 'data'], 'target': array([0., 0., 0., ..., 9., 9., 9.]), 'data': array([[0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], ..., [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0], [0, 0, 0, ..., 0, 0, 0]], dtype=uint8)}print('\n\n\n') print('代码运止结果') print('====================================\n') #打印样原数质和样原特征数 print('样原数质:{} 样原特征数:{}'.format(mnist.data.shape[0],mnist.data.shape[1])) print('\n====================================') print('\n\n\n')
代码运止结果 ==================================== 样原数质:70000 样原特征数:784 ====================================#建设训练数据集和测试数据集 X = mnist.data/255 y = mnist.target X_train,X_test,y_train,y_test = train_test_split(X,y,train_size=1000,random_state=62) print(X_train,X_test,y_train,y_test)
[[0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.]] [[0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.]] [5. 7. 7. 0. 0. 4. 4. 5. 1. 2. 8. 7. 4. 8. 2. 3. 9. 7. 2. 5. 9. 7. 9. 6. 7. 1. 1. 3. 2. 6. 9. 4. 3. 1. 8. 3. 2. 0. 8. 0. 9. 7. 2. 9. 7. 9. 5. 1. 1. 0. 8. 2. 5. 6. 5. 2. 2. 8. 1. 6. 0. 5. 9. 9. 6. 5. 4. 3. 1. 7. 5. 9. 2. 4. 2. 3. 2. 2. 8. 1. 8. 9. 1. 3. 3. 4. 7. 7. 9. 8. 5. 0. 3. 0. 1. 0. 7. 5. 8. 2. 5. 8. 3. 7. 0. 1. 9. 4. 6. 7. 0. 7. 4. 0. 6. 0. 3. 4. 0. 6. 9. 0. 6. 1. 7. 0. 3. 9. 7. 3. 8. 0. 8. 8. 5. 6. 1. 2. 3. 9. 1. 9. 2. 1. 3. 4. 9. 1. 0. 8. 6. 3. 1. 8. 5. 0. 2. 0. 6. 5. 6. 3. 1. 3. 1. 1. 1. 5. 6. 1. 9. 2. 8. 5. 7. 8. 5. 9. 1. 2. 8. 1. 0. 9. 4. 2. 4. 2. 1. 8. 8. 8. 1. 2. 9. 7. 8. 4. 1. 6. 8. 6. 7. 8. 7. 2. 5. 2. 5. 8. 1. 4. 3. 0. 6. 3. 5. 8. 6. 9. 4. 9. 1. 6. 6. 6. 3. 0. 9. 2. 4. 2. 2. 4. 3. 9. 2. 5. 8. 4. 1. 0. 8. 1. 8. 5. 3. 1. 8. 7. 7. 9. 6. 9. 3. 7. 8. 9. 1. 1. 5. 8. 7. 7. 0. 0. 5. 7. 6. 2. 5. 4. 4. 4. 3. 0. 5. 0. 8. 1. 8. 5. 2. 6. 2. 9. 9. 2. 8. 3. 8. 0. 9. 4. 8. 5. 7. 7. 0. 1. 7. 2. 4. 2. 5. 3. 7. 0. 4. 4. 9. 1. 9. 0. 4. 3. 7. 4. 5. 8. 0. 8. 1. 2. 9. 2. 1. 3. 3. 0. 5. 3. 2. 8. 7. 6. 6. 6. 4. 3. 1. 8. 4. 0. 3. 9. 2. 1. 7. 0. 5. 2. 5. 4. 3. 5. 6. 9. 4. 7. 4. 4. 2. 4. 1. 1. 3. 1. 3. 8. 5. 7. 5. 0. 1. 8. 2. 8. 2. 2. 8. 7. 1. 6. 7. 7. 1. 7. 4. 0. 5. 1. 8. 5. 1. 9. 5. 6. 8. 6. 1. 7. 9. 0. 9. 2. 3. 6. 2. 4. 8. 2. 6. 8. 1. 9. 5. 0. 7. 5. 8. 2. 0. 5. 4. 3. 1. 8. 8. 7. 8. 9. 6. 6. 0. 9. 3. 9. 8. 9. 0. 5. 0. 6. 0. 1. 9. 3. 0. 3. 9. 8. 0. 6. 5. 3. 4. 8. 5. 3. 9. 5. 8. 4. 3. 7. 1. 4. 8. 9. 6. 4. 9. 1. 0. 3. 2. 8. 4. 1. 4. 9. 7. 5. 8. 2. 6. 0. 2. 8. 1. 2. 6. 6. 0. 8. 4. 7. 5. 7. 8. 9. 0. 0. 9. 2. 6. 4. 0. 3. 6. 9. 1. 1. 1. 9. 8. 4. 1. 6. 5. 4. 1. 3. 0. 0. 4. 7. 7. 3. 5. 3. 6. 0. 1. 9. 6. 3. 2. 2. 5. 9. 2. 7. 5. 1. 0. 1. 3. 9. 0. 4. 3. 6. 7. 5. 7. 5. 9. 3. 3. 4. 8. 1. 8. 0. 1. 2. 9. 8. 3. 6. 3. 0. 7. 1. 3. 2. 2. 9. 7. 8. 0. 6. 5. 6. 1. 5. 3. 4. 5. 1. 9. 4. 9. 6. 6. 7. 4. 2. 4. 5. 8. 9. 1. 9. 6. 7. 7. 0. 0. 6. 9. 0. 6. 0. 5. 2. 8. 9. 8. 1. 4. 3. 0. 6. 5. 4. 6. 9. 7. 1. 9. 0. 5. 4. 7. 6. 0. 5. 0. 3. 0. 0. 0. 1. 4. 0. 7. 5. 0. 9. 5. 3. 4. 9. 9. 7. 6. 0. 6. 1. 3. 5. 7. 5. 2. 9. 6. 0. 5. 7. 8. 5. 0. 9. 2. 8. 1. 7. 0. 8. 7. 7. 7. 7. 5. 5. 5. 7. 2. 1. 9. 9. 7. 2. 9. 4. 0. 4. 8. 3. 3. 4. 9. 3. 7. 0. 2. 9. 8. 8. 7. 5. 8. 7. 9. 0. 6. 9. 8. 6. 1. 7. 2. 8. 9. 8. 2. 4. 7. 1. 8. 8. 7. 3. 1. 8. 8. 9. 7. 4. 7. 7. 1. 1. 8. 8. 2. 7. 1. 7. 6. 3. 7. 6. 5. 2. 3. 7. 2. 0. 7. 3. 9. 8. 0. 0. 5. 4. 4. 2. 9. 9. 5. 8. 4. 7. 4. 8. 5. 8. 3. 1. 7. 4. 8. 9. 2. 3. 8. 7. 3. 2. 7. 2. 6. 7. 7. 9. 1. 0. 8. 6. 6. 9. 4. 7. 9. 3. 1. 4. 6. 0. 8. 6. 5. 1. 8. 2. 1. 5. 3. 7. 1. 2. 5. 4. 6. 2. 6. 3. 2. 1. 7. 6. 8. 6. 3. 8. 3. 9. 0. 4. 2. 2. 8. 8. 3. 7. 8. 4. 3. 5. 3. 2. 2. 8. 0. 1. 0. 9. 4. 3. 6. 1. 6. 1. 2. 3. 3. 4. 0. 0. 7. 2. 6. 0. 3. 7. 2. 6. 4. 6. 6. 3. 9. 5. 6. 5. 8. 1. 3. 7. 8. 8. 9. 0. 1. 9. 3. 4. 1. 4. 1. 1. 7. 4. 8. 5. 8. 1. 3. 6. 3. 8. 5. 9. 0. 6. 4. 8. 0. 3. 3. 9. 1. 0. 4. 1. 3. 4. 6. 4. 9. 2. 8. 4. 0. 5. 3. 9. 7. 0. 9. 7. 8. 6. 7. 7. 6. 8. 9. 5. 1. 1. 7. 4. 5. 9. 8. 5. 1. 1. 7. 3. 1. 9. 9. 9. 3. 8. 2. 9. 7. 1. 7. 1. 1. 4. 3. 1. 1. 3. 0. 1. 3. 3. 4. 5. 8. 1. 2. 0. 4. 6. 7. 1. 2. 1.] [8. 2. 5. ... 3. 6. 9.] 2.训练MLP神经网络#设置神经网络有两个100个节点的隐藏层 mlp_hw = MLPClassifier(solZZZer='lbfgs',hidden_layer_sizes=[100,100],actiZZZation='relu',alpha = 1e-5,random_state=62) #运用数据训练神经网络模型 mlp_hw.fit(X_train,y_train) print('\n\n\n') print('代码运止结果') print('====================================\n') #打印模型分数 print('测试数据集得分:{:.2f}% '.format(mlp_hw.score(X_test,y_test)*100)) print('\n====================================') print('\n\n\n')
代码运止结果 ==================================== 测试数据集得分:85.79% ==================================== 3.运用模型停行数字识别#导入图像办理工具 from PIL import Image #翻开图像 image = Image.open("4.png").conZZZert('F') #调解图像的大小 image = image.resize((28,28)) arr = [] #将图像中的像素做为预测数据点的特征 for i in range(28): for j in range(28): piVel = 1.0 - float(image.getpiVel((j,i)))/255. arr.append(piVel) #由于只要一个样原,所以须要停行reshape收配 arr1 = np.array(arr).reshape(1,-1) #停行图像识别 print('图片中的数字是:{:.0f}'.format(mlp_hw.predict(arr1)[0]))
图片中的数字是:5总结 :
scikit-learn中的MLP分类和回归正在易用性暗示不错,但是仅限于办理小数据集,应付更宏壮或更复纯的数据集就不怎样友好了.
正在计较才华充沛并且参数设置适宜的状况下,神经网络可以比其余的呆板进修算法暗示愈加劣良